A PIIB-type Ca2+-ATPase is essential for stress adaptation in Physcomitrella patens.

نویسندگان

  • Enas Qudeimat
  • Alexander M C Faltusz
  • Glen Wheeler
  • Daniel Lang
  • Hauke Holtorf
  • Colin Brownlee
  • Ralf Reski
  • Wolfgang Frank
چکیده

Transient cytosolic Ca(2+) ([Ca(2+)](cyt)) elevations are early events in plant signaling pathways including those related to abiotic stress. The restoration of [Ca(2+)](cyt) to prestimulus levels involves ATP-driven Ca(2+) pumps, but direct evidence for an essential role of a plant Ca(2+)-ATPase in abiotic stress adaptation is missing. Here, we report on a stress-responsive Ca(2+)-ATPase gene (PCA1) from the moss Physcomitrella patens. Functional analysis of PCA1 in a Ca(2+) transport-deficient yeast mutant suggests that PCA1 encodes a P(IIB)-type Ca(2+)-ATPase harboring an N-terminal autoinhibitory domain. In vivo localizations identified membranes of small vacuoles as the integration site for a PCA1:GFP fusion protein. PCA1 mRNA levels are up-regulated by dehydration, NaCl, and abscisic acid, and PCA1 loss-of-function mutants (DeltaPCA1) exhibit an enhanced susceptibility to salt stress. The DeltaPCA1 lines show sustained elevated [Ca(2+)](cyt) in response to salt treatment in contrast to WT that shows transient Ca(2+) elevations, indicating a direct role for PCA1 in the restoration of prestimulus [Ca(2+)](cyt). The altered Ca(2+) response of the DeltaPCA1 mutant lines correlates with altered expression levels of stress-induced genes, suggesting disturbance of a stress-associated signaling pathway. We propose that PCA1 is an essential component for abiotic stress adaptation in Physcomitrella involved in the generation of a specific salt-induced Ca(2+) signature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exclusion of Na+ via sodium ATPase (PpENA1) ensures normal growth of Physcomitrella patens under moderate salt stress.

The bryophyte Physcomitrella patens is unlike any other plant identified to date in that it possesses a gene that encodes an ENA-type Na(+)-ATPase. To complement previous work in yeast (Saccharomyces cerevisiae), we determined the importance of having a Na(+)-ATPase in planta by conducting physiological analyses of PpENA1 in Physcomitrella. Expression studies showed that PpENA1 is up-regulated ...

متن کامل

In Silico and Biochemical Analysis of Physcomitrella patens Photosynthetic Antenna: Identification of Subunits which Evolved upon Land Adaptation

BACKGROUND In eukaryotes the photosynthetic antenna system is composed of subunits encoded by the light harvesting complex (Lhc) multigene family. These proteins play a key role in photosynthesis and are involved in both light harvesting and photoprotection. The moss Physcomitrella patens is a member of a lineage that diverged from seed plants early after land colonization and therefore by stud...

متن کامل

Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response

Changes in the environment, such as those caused by climate change, can exert stress on plant growth, diversity and ultimately global food security. Thus, focused efforts to fully understand plant response to stress are urgently needed in order to develop strategies to cope with the effects of climate change. Because Physcomitrella patens holds a key evolutionary position bridging the gap betwe...

متن کامل

Insights from the cold transcriptome of Physcomitrella patens: global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation

The whole-genome transcriptomic cold stress response of the moss Physcomitrella patens was analyzed and correlated with phenotypic and metabolic changes. Based on time-series microarray experiments and quantitative real-time polymerase chain reaction, we characterized the transcriptomic changes related to early stress signaling and the initiation of cold acclimation. Transcription-associated pr...

متن کامل

Large-scale gene expression profiling data for the model moss Physcomitrella patens aid understanding of developmental progression, culture and stress conditions.

The moss Physcomitrella patens is an important model organism for studying plant evolution, development, physiology and biotechnology. Here we have generated microarray gene expression data covering the principal developmental stages, culture forms and some environmental/stress conditions. Example analyses of developmental stages and growth conditions as well as abiotic stress treatments demons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 49  شماره 

صفحات  -

تاریخ انتشار 2008